Biological Psychiatry, Vol. 17, No. 8, 1982

gurlor sulyetion.

not or extension

Brief Report

The Effects of ECT Modifications on Autobiographical and Verbal Memory

Walter F. Daniel, Herbert F. Crovitz, Richard D. Weiner, and Helen J. Rogers

Received December 10, 1981; revised February 20, 1982

INTRODUCTION

Electroconvulsive therapy (ECT) produces memory impairment which may be modified (Valentine et al., 1968; Squire, 1977; Weiner, 1979) by a choice of stimulus electrode placement (bilateral vs. unilateral nondominant) or electrical stimulus wave form (sinusoidal vs. brief-pulse). Regarding electrical stimulus wave form, it has been suggested that more amnesia may follow sinusoidal than brief-pulse ECT because more total electrical energy is delivered by the former than the latter treatment modality (Medlicott, 1948; Kendall et al., 1956; Cronholm and Ottosson, 1963; d'Elia, 1974).

Several investigations have revealed that personal information inventories are sensitive means of assessing ECT-induced amnesia (Janis, 1950; Janis and Astrachan, 1951; Stieper et al., 1951; Squire et al., 1981; Weiner et al., 1982). To date, however, no investigation has examined the effects of the aforementioned ECT modifications on memory for a specific autobiographical episode (e.g., "How did you celebrate your last birthday?"). These effects are examined in the present investigation.

Supported by the Medical Research Service of the Veterans Administration. The opinions expressed herein are those of the authors and do not necessarily represent those of the Veterans Administration or Duke University Medical Center.

¹ Veterans Administration Medical Center, Durham, North Carolina.

² Department of Psychiatry, Duke University Medical Center, Durham, North Carolina.

³ All correspondence should be directed to Herbert F. Crovitz, Veterans Administration Hospital, 508 Fulton Street, Durham, North Carolina 27705.

The state of the sales of

MATERIAL AND METHODS

Subjects

A group of 16 male inpatients, all meeting Research Diagnostic Criteria (Feighner *et al.*, 1972) for major depressive disorder, was studied. The Hamilton Interviewer-Rated Depression Scale (Hamilton, 1960) was administered before each patient's first ECT to measure severity of depression. Patients with any evidence or history of neurological dysfunction were excluded. No patient was tested who had received ECT within 12 months prior to his present ECT course. Dominance was determined by a battery modified from d'Elia (1970). All patients were strongly right-body dominant.

ECT Technique

Patients received either standard bilateral frontotemporal ECT or unilateral nondominant ECT (d'Elia, 1970, placement). Electrical stimulation was either bidirectional brief pulse (800-mA peak amplitude, 60 pulse-pairs/sec, 0.75-to 1.5-msec pulse duration, 1.25- to 2.00-sec pulse train duration; MECTA Corpdevice) or bidirectional simusoidal (140-170 V rms, 60 Hz, 0.5- to 1.0-sec train duration; Medcraft B-24 Mark III device). Thus four treatment groups were formed (unilateral nondominant pulse, unilateral nondominant sine, bilateral pulse, bilateral sine). Patients were randomly assigned to one of these four groups.

ECT was administered three times a week (M,W,F). Patients were premedicated with atropine (mean of 0.6 mg im) 30 min before ECT. Anesthesia was produced by intravenous methohexital, and subtotal muscle relaxation was achieved by intravenous succinylcholine. Ventilation with 100% O₂ was begun shortly after methohexital injection and was continued (except for several seconds during electrical stimulation) until satisfactory spontaneous respiration was achieved.

Seizures were monitored electroencephalographically. Seizure length was taken as time until cessation of epileptiform activity. The number of joules of electrical energy was measured with a custom-made integrating watt-second meter (Indiana University). Table I illustrates patient and ECT variables. The four groups were balanced with respect to all of these variables except electrical energy. Sinusoidal stimulation delivered more joules of electrical energy than did pulse stimulation (means: sine = 68.6 joules, pulse = 30.6 joules; F = 13.6, df = 1, 12, P < 0.01), a difference which is consistent with that reported elsewhere (e.g., Weiner, 1980).

ECT Modifications and Memory

Table I. Patient and ECT Variables

Variable	Range	Mean	Standard deviation
Age (years)	28-73	58.2	13.2
Hamilton score	30-62	47.7	11.8
Education (years)	4-16	10.2	3.1
Methohexital (mg)	60-80	65.6	8.9
Succinylcholine (mg)	60-120	73.8	18.2
Seizure length (sec)	25-195	57.2	41.7
Joules of energy	13-129	49.6	31.3

Memory Testing

Base-line memory testing was attempted 45 min (mean: 50 min) before each patient's sixth ECT. At this time, patients were read the "Airplane List" (Crovitz, 1979) three times. This story contains ten target words structured in a bizarre-imagery chain-mnemonic format to encourage deep and elaborate encoding (Crovitz, 1979). After each reading, free-recall memory was tested. Following the third free-recall testing, multiple-choice recognition memory was tested. The correct word was randomly interspersed with four distractor words. The last testing mode (story-cued recognition) involved reading each sentence of the story one at a time, with a missing blank(s) where the target word belonged. The same choices used in multiple-choice testing were printed below each sentence. Patients were instructed to guess on both recognition tests if they did not know the correct word.

Twenty-four hours after ECT, each patient was first asked "Do you remember being told a story containing ten words yesterday morning before your treatment?" The patient's "yes" or "no" response was accepted on face value as indicating the presence or absence of autobiographical memory for having heard the Airplane List. Each patient was informed that he was told a story before his treatment, and was asked to free-recall words from the story. Multiplechoice and story-cued recognition testing were then performed exactly as was done before ECT.

RESULTS

Table II displays autobiographical memory as a function of electrode placement and stimulus wave form. An exact Mantel-Haenszel Test (Thomas, 1975) revealed less autobiographical memory following bilateral than unilateral

Table II. Autobiographical Memory as a Function of Electrode Placement and Stimulus Wave Form

		Treatmen	Treatment modality	
Autobiographical memory present?	Bilateral sine $(n = 3)$	Bilateral pulse $(n = 4)$	Unilateral sine $(n = 5)$	Unilateral pulse $(n = 4)$
Yes	0	0	4	3
No	3	4	1	ı

nondominant ECT (p < 0.01), but no effect due to stimulus wave form (p >0.20). There was no difference in joules of electrical energy ($t=0.87,\,p>0.20$) or seconds of seizure length (t = 0.49, p > 0.20) between patients with and without autobiographical memory.

cant main effect for electrode placement (F = 9.2, df = 1, 12, p < 0.05), with greater forgetting following bilateral than unilateral ECT. There was no main effect for stimulus wave form (F = 1.9, df = 1, 12, p > 0.10), and there was no words as a function of treatment group. Analysis of variance revealed a signifi-Figure 1 displays the amount of pre-post ECT forgetting of Airplane List

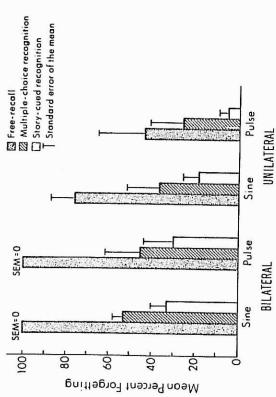


Fig. 1. Mean percentage of words forgotten before and after ECT in relation to treatment group.

ECT Modifications and Memory

923

APPENDENT APPLIES

interaction of electrode placement with stimulus wave form (F = 0.9, df = 1, 12,p>0.20). Pairwise Tukey tests revealed that bilateral ECT produced more forgetting than unilateral ECT on free-recall testing (p < 0.05), but not on multiple-choice or story-cued recognition testing (p > 0.05).

DISCUSSION

tablish statistical significance for alleged intertreatment amnestic differences ported more amnesia following sinusoidal than pulse stimulation, but these studies contain the following serious methodological inadequacies: failure to es-(Medlicott, 1948; Epstein and Wender, 1956; Valentine et al., 1968); confounding of results by postictal confusion (Medlicott, 1948; Valentine et al., 1968); Sinusoidal stimulation did not produce significantly greater autobiographical or verbal amnesia than did brief-pulse stimulation. Other studies have reet al., 1956; Valentine et al., 1968); intertreatment difference in hypoxia (Epstein and Wender, 1956); and intertreatment differences in treatment number and spacing (Kendall et al., 1956). Our study contains none of these methodofailure to specify whether patients were oxygenated (Medlicott, 1948; Kendall logical inadequacies, and no statistically significant effect of stimulus wave form on memory functions was observed.

nant ECT (e.g., Lancaster et al., 1958; Cannicott and Waggoner, 1967; Costello Regarding electrode placement, our results are consistent with other reports of greater retrograde amnesia following bilateral than unilateral nondomiet al., 1970; d'Elia, 1970; Weiner et al., 1982). However, this is the first investigation to demonstrate a statistically significant greater impairment in memory for an autobiographical episode following bilateral than unilateral nondominant

The forgetting of an autobiographical episode as simple as having heard the autobiographical memory failures, if added across a course of ECT, may produce gross autobiographical memory gaps that may be disconcerting to a patient and a patient's family, because the patient's sense of continuity with his or biographical deficits extend. Nor is it known whether low-energy brief-pulse Airplane List before ECT is not a trivial phenomenon. Similar ECT-induced her own past may be disrupted. It is not yet known how far back in time auto-ECT will reduce these deficits if autobiographical memory is evaluated more thoroughly than in the present investigation.

REFERENCES

Cannicott, S. M., and Waggoner, R. W. (1967). Unilateral and bilateral electroconvulsive therapy: A comparative study. Arch. Gen. Psychiat. 16: 229.

Costello, C. G., Belton, G. P., Abra, J. C., and Dunn, B. E. (1970). The amnesic and therapeutic effects of bilateral and unilateral ECT. Brit. J. Psychiat. 116: 69.

Cronholm, B., and Ottosson, J. O. (1963). Ultrabrief stimulus technique in electroconvulsive therapy. 1. Influence on retrograde amnesia of treatments with the Elther ES electroshock apparatus, Siemens Konvulsator III and of lidocaine-modified treatment. J. Nervous Mental Disease 137: 117.

Crovitz, H. F. (1979). Memory retraining in brain-damaged patients: The Airplane List. Cortex 15: 131.

d'Elia, G. (1970). Unilateral electroconvulsive therapy. Acta Psychiat. Scand. Suppl. 215: 5.
d'Elia, G. (1974). Unilateral electroconvulsive therapy, in Psychobiology of Convulsive Therapy, Fink, M., Kety, S., McGaugh, J., and Williams, T. (eds.), V. H. Winston & Sons, Washington, D.C.

Epstein, J., and Wender, L. (1956). Alternating current vs. unidirectional current for electroconvulsive therapy - Comparative studies. Confin. Neurol. 16: 137.

Feighner, J. P., Robins, E., Guze, S. D., Woodruff, P. A., Winokur, A., and Munoz, R. (1972). Diagnostic criteria for use in psychiatric research. Arch. Gen. Psychiat. 26: 57.

Hamilton, M. (1960). A rating scale for depression. J. Neurol. Neurosurg. Psychiat. 23: 56.

Janis, I. L. (1950). Psychologic effects of electric convulsive treatments (1. Post-treatment amnesias). J. Nervous Mental Disease 3: 359.

Janis, I. L., and Astrachan, M. (1951). The effect of electroconvulsive treatments on memory efficiency. J. Abnormal Soc. Psychol. 46: 501.

Kendall, B. S., Mills, W. B., and Thale, T. (1956). Comparison of two methods of electroshock in their effect on cognitive functions. J. Consult. Psychol. 20: 423.

Lancaster, N. P., Steinert, R. R., and Frost, I. (1958). Unilateral electroconvulsive therapy.

J. Mental Sci. 104: 221.

Medlicott, R. W. (1948). Brief stimuli electroconvulsive therapy. New Zealand Med. J. 47: 29.

Squire, L. R. (1977). ECT and memory loss. Am. J. Psychiat. 134: 997.

Squire, L. R., Slater, P. C., and Miller, P. L. (1981). Retrograde amnesia and bilateral electroconvulsive therapy. Arch. Gen. Psychiat. 38: 89.

Stieper, D. R., Williams, M., and Duncan, C. P. (1951). Changes in impersonal and personal memory following electroconvulsive therapy. J. Clin. Psychol. 7: 361.

Thomas, D. G. (1975). Exact and asymptotic methods for the combination of 2 × 2 tables. Comp. Biomed. Res. 8: 423.

Valentine, M., Keddie, M. G., and Dunne, D. (1968). A comparison of techniques in electroconvulsive therapy. *Brit. J. Psychiat.* 114: 989.

Weiner, R. D. (1979). The psychiatric use of electrically induced seizures. Am. J. Psychiat. 132: 1507.

Weiner, R. D. (1980). ECT and seizure threshold: Effects of stimulus wave form and electrode placement. *Biol. Psychiat.* 15: 225-241.

Weiner, R. D., Rogers, H. J., Davidson, J., and Miller, R. D. (1982). Evaluation of the central nervous system risks of ECT. Psychopharmacol. Bull. 18: 29.

Glucose-6-Phosphate in a Psychiatric Pop Study

Suhayl J. Nasr, 1 Edward Altm:

Received February 1, 1982

Glucose-6-phosphate dehydrog hexose monophosphate shunt. bolic disorder (Beutler, 1974) tissues have also been found may result in hemolytic anem fave beans, or after conditionalso been known to occur foll enzyme deficiency affects ar mainly blacks, Mediterraneans

Following the report of veloped transient psychosis for (Dern et al., 1963), G6PD schizophrenic patients (Dern 1965). These studies showed chosis, but there are question these studies. Heller et al. (19 in over 65,000 admissions found no correlation between

Supported in part by USPHS MI done when all the authors were Biological Psychiatry.

Affective Disorders Clinic, Univ

² University of Chicago Pritzker S