of the California School of Professional Psychology—Fresno in 1977, where he taught introductory and advanced neuropsychology to clinical psychology graduate students. He became the Provost of CSPP—Fresno in 1982 and continues to be interested in neuropsychological issues.	W. Gary Cannon, PhD, received his doctorate in Clinical Psychology from Brigham Young University after completing a neuropsychological rotation at the Veteran's Administration Hospital neuropsychology laboratory in Salt Lake City, Utah. After completing a postdoctoral fellowship with the Devereux Foundation, and teaching at the University of California Santa Barbara, he joined the faculty	division of neuropsychology. His academic appointments have included profes- sor of neurology at the Medical College of Georgia and at Indiana University Medical Center, and Marie Wilson Howell visiting scholar at the University of Arkansas. He has edited the International Journal of Clinical Neuropsychology, Clinical Neuropsychology, and Neuropsychology and Special Education, and served as consulting editor to Archives of Clinical Neuropsychology, International Journal of Psychophysiology, and the Journal of Consulting and Clinical Psychology.	Lawrence C. Hartlage, PhD, directs the Augusta Neuropsychology Center in Augusta, GA, and consults to the courts and to rehabilitation hospitals concern- ing head injuries and their sequelae. He has served as president of the National Academy of Neuropsychology and of the American Participation of the National	author of six assessment instruments. His Death Anxiety Scale has been trans- lated into many languages and used on all six continents. A synthesis of this re- search is found in the 1986 Lonetto and Templer book <i>Death Anxiety</i> . He is a fellow of the American Psychological Association and the American Psychological Society.	Donald I. Templer, PhD , professor of psychology at California School of Professional Psychology—Fresno, received his doctorate in clinical psychology from the University of Kentucky in 1967. He has contributed to more than 100 publications, most often writing in the areas of neuropsychology, schizophrenia, and death. He has over 1000 citations to his credit, with one of his earlier articles being declared a citation classic by <i>Current Contents</i> in 1984. Templer is an		
	W. Gary Cannon Editors	Donald I. Templer Lawrence C. Hartlage	Brain Health	Brain Vulnerability and	BRAIN DAMAGE		

å.,

Springer Publishing Company New York

Safe & Dealer stranges in

Lonata I. Lempte	damage—Prevention. I. Templer, Donald I. , Lawrence C. Ill. Cannon, W. Gary. 1. Brain Injuries—etiology. 2. Brain Injuries—prevention	5. Brati 6. Assa 7. Psyc	 Springer Publishing Company, Inc. Springer Publishing Company, Inc. Sof Broadway New York, NY 10012-3955 Accidental Injuries of Children William G. Miller and Frank D. Miller 	 992 by Springer Publishing Company, Inc. 1. Brain ved publication may be reproduced, stored in a retrieval system, or any form or by any means, electronic, mechanical, photocopying, otherwise, without the prior permission of Springer Publishing 	Contributors Introduction		
Part II: Chemical Damage	nd Donald I. Templer ain Damage	Family Violence Alan Rosenbaum	and Richard H. Drew Children nd Frank D. Miller	1 Injury from Motor Vehicle Accidents Lawrence C. Hartlage and Gurmal Rattan Act Sports Richard H. Drew and Donald I. Templer	Part I: Impact Damage	CONTENTS	
	95	58 72 80	30 41				

4

. 1

Index	14. Conclusion: Strategies for Prevention Donald I. Templer, Lawrence C. Hartlage, and W. Gary Cannon	 Neuropsychological Consequences of Malnutrition Rik Carl D'Amato, Mary Mathai Chittooran, and Janice D. Whitten 	 Neurological and Neuropsychological Consequences of Drug Abuse Michael W. Lilliquist and Erin D. Bigler 	 Neuropsychology of Alcohol-Induced Brain Damage: Current Perspectives on Diagnosis, Recovery, and Prevention Ralph H. B. Benedict and Arthur MacNeil Horton, Jr. 	10. Agricultural and Domestic Neurotoxic Substances Raymond Singer	vi CONTENTS
225	214	193	161	146	132	

Index

CHAPTER 8

ECT AND PERMANENT BRAIN DAMAGE

Donald I. Templer

science" (p. 569). one of the most effective, therapeutic techniques in the whole of medical some quatters, it is still being practiced as one of the cheapest and safest, and yet gassed to death. On the other hand, Shukla (1981) stated, "Despite abhorrence in "inmates" in German psychiatric hospitals were starved, beaten, drugged, and emotionally laden issues such as ethnic differences in IQ and the bad effects of undercurrents tend to run strong. It may, in this respect, be comparable to other ECT in the 1930s to the authoritarian political era in Europe in which 275,000 marijuana. Friedberg (1977), an outspoken critic of ECT, attributed the rise of for which it is difficult to obtain an objective perspective because emotional Electroconvulsive therapy (ECT) is a very controversial treatment. It is a topic

correct facts about ECT (Janicak, Mark, Trimakas, & Gibbons, 1985). more favorably disposed toward ECT were more experienced and knew more government rule. However, it is here noted by the present author that a study the fact that politically educated persons have little tolerance for obligatory viewed as arising from the valuing of freedom and autonomy in our society, plus has operated from a paternalistic point of view and that the attack on ECT can be consider patient pain, fear, or dependency." He said that traditionally medicine attention to patient education or self-esteem and libertarian ethics do not libertarian and Kantian assumptions. He argued, "Paternalism does not pay much the former have a paternalistic philosophy and those who oppose it have ences between those who favor and those who are opposed to ECT. He said that indicated that the psychiatrists and other mental health professionals who were Hoffmann (1986) provided a scholarly discussion of the philosophical differ-

modality. And, because controlled research has demonstrated its efficacy, and to-year variation (Kramer, 1985). ECT is far from becoming an obsolete treatment patients received a total of 99,425 ECT treatments in California, with little year-1975 severely restricted the use of ECT. Nevertheless, from 1977 to 1983, 18,627 ric patients given ECT (Thompson & Blain, 1987). In California, legislation in decrease from 1975 to 1980. However, even in 1980 there were 33,384 psychiat-The use of ECT in the United States is decreasing. In fact, there was a 46%

because it is especially valued in the recalcitrant cases of depression that do not respond to antidepressant drugs, it is not going to become an obsolete treatment unless and until more effective antidepressant drugs are developed. Janicak, Davis, Gibbons, Ericksen, Chang, and Gallagher (1985) published a metaanalysis that showed ECT to be clearly superior to the tricyclic antidepressants, the monoamine oxidase (MAO) inhibitors, simulated ECT, and placebo for severe depression.

This review covers eight areas relevant to the issue of permanent brain damage caused by ECT. These are (a) subjective report long after ECT, (b) human brain autopsy reports, (c) animal brain studies, (d) the brains of epileptics, (e) spontaneous seizures, (f) psychological test findings in patients with history of many ECT, (g) CT scan findings, and (h) magnetic resonance imaging (MRI) findings.

It is important that the reader be aware of the importance of distinguishing between the modern era of ECT administration with hyperoxygenation, muscle relaxation, and general anaesthesia, and ECT administration before the 1960s, which was less safe for the brain. A number of researchers and authorities have emphasized this distinction (Janicak, Mark, Trimakas, & Gibbons, 1985; Weiner, 1979; d'Elia & Raotma, 1975; Kendell & Pratt, 1983).

It is also important for the reader to bear in mind that unmodified ECT is often administered in third world countries (Weiner, 1984). The brains of poor people in poor countries also deserve protection. Shukla (1981) stated that in India, because of the shortage of anesthesiologists, most psychiatric centers, even in teaching centers, often have to use unmodified ECT that is followed by severe confusion. In India, ECT is used much more often than in the United States and is the mainstay of treatment for schizophrenia.

SUBJECTIVE REPORT

It is common knowledge that most patients complain of memory impairment during and after their course of ECT. There have been at least four studies that have investigated subjective reports of memory deficit long after it is expected that this impairment should have dissipated.

Freeman, Weeks, and Kendell (1980) placed a notice in a local newspaper in the United Kingdom asking for participation of subjects who had ECT at any time in their lives. In addition to the 13 subjects thusly recruited, there were 12 subjects who had been identified as complainers of impairment and referred by local psychiatrists. There were two main sorts of memory complaints. One was forgetfulness of such things as faces, names, phone numbers, and messages. The other was that of holes or gaps in past memories. Furthermore, these subjects' scores on neuropsychological tests were inferior to those of control persons. Needless to say, the generalizability of these findings is very limited because of

97

the subject selection process. Nevertheless, these findings do mesh with other studies concerning the memory complaints of patients who had a past history of FCT

One hundred and sixty-six patients who had ECT from 1 to 7 years before were interviewed. Although a clear majority of the patients viewed the treatment as beneficial, 30% stated thaty believed the ECT produced lasting memory impairment (Freeman & Kendell, 1980).

Squire and Slater (1983) followed up 31 patients 3 years after ECT. Eighteen (58%) of the respondents said they did not think their memory was as good as for most people their age. Seventeen of these 18 persons attributed their memory difficulty to ECT.

In summary, there is a good accumulation of evidence that many patients complain of memory impairment attributed to their ECT years before. The authors of these studies pointed out that these reports do not provide conclusive evidence that such impairment actually exists. Nevertheless, these reports do legislate against a completely confident bill of health for ECT.

ANIMAL BRAIN STUDIES

to clearly irreversible changes such as shadow cells and neuronophagia. reversible-type changes. However, some of the significant differences pertained had received four ECTs. Most of the significant differences were with respect to that had 11-16 ECTs had significantly greater pathology than the animals that the ECT animals were significandy differentiated from the controls. The animals control subject. On a number of different vascular, glial, and neuronal variables, still alive. Brain examinations were conducted blindly with respect to ECT versus animals, the cerebrums were removed under anesthesia while the animals were being control animals. To prevent artifacts associated with the sacrificing of the sophistication and rigor. Hartelius employed 47 cats, 31 receiving ECT and 16 tionably the outstanding study in the area with respect to methodological deficient controls. The research that Hartelius himself carried out was unquesof these domains. However, as Hartelius pointed out, inferences of these studies vascular, glial, or neurocytological—or (as was generally the case) in two or three and some authors have not reported permanent brain damage. In the 15-study tended to be conflicting because of different methods used and because of review of Hartelius (1952), 13 of the 15 reported pathological findings that were have been carried out, and that some authors have reported permanent damage Perhaps the most reasonable omnibus generalization is that many animal studies

The preponderance of human and animal autopsy studies were carried out prior to the modern era of ECT administration that included anesthesia, muscle relaxants, and hyperoxygenation. In fact, animals that were paralyzed and artificially ventilated on oxygen had brain damage of somewhat lesser magnitude

Needless to say, the generalization from these studies to humans is most difficult because of the great variation in stimulus parameters and other propermeasures (Meldrum & Brierley, 1973; Meldrum, Vigourocex, & Brierly, 1973). (p. 347). HUMAN BRAIN AUTOPSY REPORTS matter of in what circumstances it occurs. damage. It is not a matter of whether ECT can produce permanent damage but a damage through ECT, and it is possible to administer ECT with minimal or no both animals and humans. It is possible to cause definite permanent brain design. Nevertheless, there does seem to be one generalization that applies to ties of the ECT, the different types of animals, and varying sophistication of than, although similarly patterned as, animals not convulsed without special

representative of patients receiving ECT. They tended to be in inferior physical seen after execution. Needless to say, patients who died following ECT are not or renal disease, the cerebral changes, chiefly vascular, may be permanent' changes are reversible. If, on the other hand, the patient has cardiac, vascular the individual being treated is well physically, most of the neuropathological health. Madow concluded, on the basis of these 38 cases and five of his own, "II neuronal and glial changes, reported numerous slits and rents similar to that pathology. In one case, the author (Riese, 1948), in addition to giving the reversibility was much less with the 12 patients who had neuronal and/or glial However, much of this could have been of a potentially reversible nature. Such reviewed 38 such cases. In 31 of the 38 cases, there was vascular pathology. examination of brains of persons who had died following ECT. Madow (1956) In the 1940s and 1950s, there were a large number of reports concerning the

apparently nonblind determination, do argue in favor of the brain safety of ECT. evidence of brain injury resulting from the ECT. The author of the present additional ECTs. The authors stated that the moderate cerebral atrophy was after a documented history of 1250 bilateral treatments beginning in the 1920s. to reveal the sites of the cannula used in her prefrontal lobotomy in 1953. earlier. I note that the authors stated that examination of the frontal lobes failed woman's aging processes masking the ECT effects upon the brain many years era (1960 to present) of ECT administration. However, I raise the question of this especially since many of her treatments were administered prior to the modern chapter does believe that these clinical observations, even though based on an consistent with her age and did not show old focal ischemic lesions or any There was also some unsubstantiated evidence of her having received 800 An 89-year-old woman with a long history of psychiatric illness died in 1982 An interesting autopsy case report was presented by Lippmann et al. (1985)

CT SCANS

86

IMPACT DAMAGE

atrophy could have been present before ECT and in some way contributed to the patients receiving ECT. atrophy was found. Borderline significance was obtained with parietal atrophy. However, the authors appropriately raised the possibility that frontal lobe However, a positive significant relationship between ECT and frontal lobe between history of ECT and CT-scan-determined atrophy and ventricle size. Calloway, Dolan, Jacoby, and Levy (1981) found no significant relationships

to four of 15 control patients without a history of ECT. scans in 15 of 22 elderly depressed patients who had a history of ECT in contrast Calloway, Dolan, and Jacoby (1988) found frontal lobe atrophy assessed by CT

patients with no history of ECT. who had received ECT had significantly higher ventricle brain ratios than Weinberger, Torrey, Neophyrides, and Wyatt (1979) found that those patients

received modern era administration with oxygenation, sedation, and general and presumably living in the United States, a reasonable assumption is that they also not specified. However, since the patients were from 18 and 40 years of age specify how many patients received ECT. The details of ECT administration were 1984). However, ECT was a minor part of this study and the authors did not largement and number of life history of ECT in 27 bipolar patients (Pearlson et al. One study found no relationship between CT scan assessed ventricular en-

bilateral or equally ipsilateral and contralateral to the treated hemisphere. The prolonged courses of ECT taking place over widely varying period of time. that it is encouraging that CT showed no evidence of this occurring with authors concluded that the absence of CT changes cannot exclude damage but of therapy, which had lasted from over 1-40 years. Neither blind assessment of Any increase in atrophy over the years was described as minimal and either CT scans nor ventricle measurement pointed to effects of ECT upon the brain. after two to six treatments. In all 12 patients, examinations were made at the end history of ECT. In five cases, scans were obtained early in the course of treatment to the nondominant hemisphere. In two cases, CT scans were performed before history of from 14 and 398 and a median of 94 ECT which were predominantly Kendell and Pratt (1983) presented CT findings on 12 patients who had a

with a history of ECT did not differ in CT scan findings from control patients differentiated the two groups. without a history of ECT. Neither atrophy scores nor ventricle brain ratios Kolbeinson, Arnoldson, Petruson, and Skulason (1986) found that 22 patients

Goldfarb, & Varga, 1979). The patient was very confused, disoriented with ECT that consisted of 10 ECT in a period of 45 minutes (Menken, Safer, One patient was given a CT scan the day before and 3 hours after multiple

respect to time and place, and amnestic for events before the day of ECT. Nevertheless, no CT changes were observed. The findings would appear to point to the safeness of the ECT. However, the present author is willing to entertain an alternative explanation. If the CT did not reflect the massive acute brain syndrome with gross disorientation, then it may not be capable of detecting minor changes in patients months or years after the ECT. Perhaps the CT scan is not the most optimal tool for ruling out brain changes resulting from ECT. A reasonable generalization may be that CT scan being from ECT.

A reasonable generalization may be that CT scans have failed to provide a definitive perspective with respect to the matter of permanent brain damage.

MAGNETIC RESONANCE IMAGING

Coffey and colleagues (1988) reported on magnetic resonance imaging before and after ECT administered to nine depressed patients. Blind raters' assessments showed no significant differences between pre- and postECT in cortical atrophy and global comparison. There were also no significant changes in ventricle brain ratios. Furthermore, patients with preexisting brain disease showed no worsening. However, the authors did state: "Still these observations need to be confirmed in a larger number of subjects with techniques that will quantitate even subtle brain changes which might otherwise not be detected by qualitative clinical assessments. Further studies should also include patients with histories of previous ECT (to evaluate any potential cumulative effects) and should involve long-term follow-up studies including boih subjective and objective measures of memory function" (p. 706).

memory function" (p. 706). A case report of a multiple sclerosis patient with magnetic resonance imaging before and after ECT is reassuring. There was no evidence of changes in white matter lesions visualized on spin-echo images (Coffee, Weiner, McCall, & Heinz, 1987).

In summary, the two studies using magnetic resonance imaging did not provide evidence of permanent brain damage resulting from ECT. However, more studies are needed.

PSYCHOLOGICAL TESTING WITH PAST HISTORY OF MANY ECTS

Goldman, Gomer, and Templer (1972) administered the Bender-Gestalt and the Benton Visual Retention Test to schizophrenics in a VA hospital. Twenty had a past history of from 50 to 219 ECTs, and 20 had no history of ECT. The ECT patients did significantly worse on both instruments. Furthermore, within the ECT groups there were significant inverse correlations between performance on these tests and number of ECTs received. However, the authors acknowledge that

ECT-caused brain damage could not be conclusively inferred because of the possibility that the ECT patients were more psychiatrically disturbed and for this reason received the treatment. (Schizophrenics tend to do poorly on tests of organicity.) In a subsequent study aimed at ruling out this possibility, Templer, Ruff, and Armstrong (1973) administered the Bender-Gestalt, the Benton, and the Wechsler Adult Intelligence Scale to 22 state-hospitalized schizophrenics. The ECT patients were significantly inferior on all three tests. However, the ECT patients were found to be more psychotic. Nevertheless, with degree of psychosis on the Bender-Gestalt, although not significantly so on the other two tests.

Thus, the research using psychological tests with patients with history of many ECTs does suggest permanent impairment. However, one should bear in mind that retrospective studies do not permit the same confidence as do prospective studies. Also, the ECT in these studies was administered before the modern era of ECT.

BRAINS OF EPILEPTICS

applied" (p. 18). in the upper part of the left motor region "at the site where an electrode had been not convulse. When he died 3 days later, a subarachnoid hemorrhage was found (Larsen & Vraa-Jensen, 1953) of a man who had been given four ECTs, but did duced convulsions. Further argument provided by Friedberg (1977) is the case less EEG abnormality and intellectual impairment with pharmacologically inother locality or system of the body. More pertinent are the studies of Small induced convulsions than ECT, Also, Levy, Serota, and Grinker (1942) reported (1974) and of Laurell (1979) that found less memory impairment after inhalanthead) produce more deleterious effects in the central nervous system than any damage from the externally applied electrical current as well as from the seizure. conservative perspective in regard to ECT because the latter could produce Experimental research with animals has shown that electric shocks (not to the inspecting the evidence with respect to epileptics may provide us with a changes, then an electrically induced convulsion should also do so. In fact, It would seem that if an epileptic grand mal seizure produces permanent brain

A number of postmortem reports on epileptics, as reviewed by Meldrum, Horton, and Brierley (1974) have indicated neuronal loss and gliosis, especially in the hippocampus and temporal lobe. However, as Meldrum et al. (1974) pointed out, on the basis of these postmortem reports, one does not know whether the damage was caused by the seizures or whether both were caused by a third factor intrinsic to the epilepsy. To clarify this issue, Meldrum et al. (1974) pharmacologically induced seizures in baboons and found cell changes that corresponded to those in human epileptics.

Gastaut and Gastaut (1976) demonstrated through brain scans that in seven of 20 cases status epilepticus produced brain atrophy. They reasoned, "Since the edema and the atrophy were unilateral and bilateral and related to the localization of the convulsions (unilateral or bilateral chronic seizures), the conclusion can be drawn that the atrophic process depends upon the epileptic process and not on the cause of the status" (p. 18).

A common finding in epileptics and ECT patients is noteworthy. Norman (1964) stated that it is not uncommon to find at autopsy both old and recent lesions in the brains of epileptics. Alpers and Hughes (1942) reported old and recent brain lesions associated with different series of ECT.

SPONTANEOUS SEIZURES

The reports of spontaneous seizures, which appeared in the pre-1960s ECT era, probably do not constitute one of the more definitive domains. However, this section is included to increase breadth of perspective.

It would appear that if seizures that were not previously evidenced appeared after ECT and persisted, permanent brain pathology must be inferred. There have been numerous cases of postECT spontaneous seizures reported in the literature and briefly reviewed by Blumenthal (1955), Pacella and Barrera (1945), and Karliner (1956). It appears that in the majority of cases the seizures do not persist indefinitely, although an exact perspective is difficult to obtain because of anticonvulsant medication employed and the limited follow-up information. Another difficulty is, in all cases, definitively tracing the etiology to the ECT, since spontaneous seizures develop in only a very small proportion of patients given this treatment. Nevertheless, the composite of relevant literature does indicate that, at least in some patients, no evidence of seizure potential existed before treatment and postECT seizures persist for years.

An article that is one of the most systematic and representative in terms of findings is that of Blumenthal (1955) who reported on 12 schizophrenic patients in one hospital who developed postECT convulsions. Six of the patients had previous EEGs with four of them being normal, one clearly abnormal, and one mildly abnormal. The patients averaged 72 ECTs and 12 spontaneous seizures. The time from last treatment to first spontaneous seizure ranged from 12 hours to 11 months, with an average of 2½ months. The total duration of spontaneous seizures in the study period ranged from 1 day to 3½ years, with an average of seizures, eight of the 12 patients were found to have a clearly abnormal, and one a mildly abnormal EEG.

Masovich and Katzenelbogen (1948) reported that 20 of their 82 patients had convulsive pattern cerebral dysrhythmia 10 months post-ECT. None had such in their pretreatment EEG. Nine (15%) of the 60 patients who had three to 15 treatments, and 11 (50%) of the 22 patients who had from 16 to 42 treatments

 $(x^2 = 10.68; p < 0.01,$ according to our calculations) had this 10-month post-treatment dysrhythmia.

SYNTHESIS

There seems to be little doubt that ECT always produces an acute brain syndrome and that such remits over time. There seems to be little doubt that ECT has, at least in the past, caused permanent brain damage in some patients and has the capacity to continue to do so. There also seems to be little doubt that modern era ECT has greater brain safety than that administered prior to the 1960s. It appears that the overwhelming majority of persons who currently receive ECT in the United States do not suffer from machine constitute of the terms of terms of the terms of the terms of the terms of the terms of terms of terms of terms of terms of terms of the terms of terms of

ECT is hazardous to the brain and others argue it is safe. I believe they are both cation of who are average or typical alcoholics, the situation becomes less clear. This is the difficult situation we face with ECT patients. Some authors argue that even a retrenchment in cortical atrophy. However, when we attempt to supply the details to answers about the typical or average alcoholic, or even the specifiand permanent brain pathology, for example, as seen in Korsakoff's syndrome. improvement in neuropsychological testing over time and in some patients neuropsychological deficits. We know that in many of these patients there is We know that a large percentage of newly abstinent alcoholics suffer from effects rather quickly dissipate. We also know that some alcoholics have massive alcoholics and in all normal drinkers. We also know that all or almost all of these whether or not alcohol and alcoholism are associated with brain pathology. We the difficulties in answering such questions are similar to the questions regarding which we cannot provide confident answers. The present author believes that ECT patient? Can we tell most of our patients there is absolutely and positively ment? What are, if any, the long-term effects of ECT in the "typical" or "average" do know that a small amount of alcohol produces changes in the brain in all no danger of any permanent brain changes? These are the sort of questions for United States do not suffer from massive cognitive deficits caused by the ECT. What percentage of persons who receive ECT suffer some permanent impair-

The crucial questions at this point in time are those centered around in whom and in what circumstances are the risks higher and lower. We are able to make some generalizations. There is research evidence that type of ECT administration does have an effect upon degree of confusion and amnesia. Higher levels of eliciting properties, and bilateral electrode placement are associated with greater confusion and amnesia (Sackeim, Decena, Prohovnik, Malitz, & Resor, 1983; Cronholm & Ottossom, 1963; Ottossom, 1960; Valentine & Dunne, 1969; Weiner, Rogers, Welch, Davison, Weir, Cahill, & Squire, 1983; Sackeim, Portney, Neeley, Steif, Decema, & Malitz, 1986; Squire & Slater, 1978).

-

-.

and irreversible, in cats that were given 11 to 16 than in those given four ECTs. p < 0.05.) And, as already stated, Hartelius found greater damage, both reversible mentally administrated convulsions tended to have recevied more convulsions and Brierley (1974), the nine baboons who suffered brain damage from experiworse on tests. However, it would be much more difficult to explain away the than the five that did not incur damage. (According to our calculations, U = 9, prior to ECT. Also difficult to explain away is that in Table 1 of Meldrum, Horton dysrhythmia (Mosovich & Katzenelbogen, 1948). No patients had dysrhythmia relationship between number of ECTs received and EEG convulsive pattern function of the more disturbed patients both receiving more ECTs and doing of ECTs and scores on psychological tests. It is conceivable that this could be a have previously referred to the significant inverse correlations between number A convergence of evidence indicates the importance of number of ECTs. We

subjects suffer no demonstrable permanent effects has provided rationale for some although usually not devastating, impairment. The fact that many patients and authorities to commit the nonsequitur that ECT causes no permanent harm. reports of patients likewise differ from those of no lasting effect to appreciable, effect to considerable lasting damage with the latter being more of the exception. and human autopsy studies there is typically a range of findings from no lasting Most ECT patients do not have spontaneous seizures, but some do. The subjective Throughout this review the vast individual differences are striking. In the animal

bogen (1948) found that patients with pretreatment EEG abnormalities are more changes following ECT in older cats than younger cats. Mosovich and Katzenel conditions with pre-existing brain damage, as in cerebral arteriosclerosis' patients with significant degree of arteriosclerotic or hypertensive disease. Alpers mended that CSF protein and cell counts be ascertained before and after ECT in EEGs more adversely affected by treatment. likely to show marked post-ECT cerebral dysrhythmia and to generally show (1946) reported, "Autopsied cases suggest that brain damage is likely to occur in was a 57-year-old diabetic, hypertensive, arteriosclerotic woman. Jacobs recom-Hartelius (1952) found significantly more reversible and irreversible brain ECT memory changes continue for a longer time than for younger patients. (p. 369). Wilcox (1944) offered the clinical impression that, in older patients, patients. The one person who developed abnormal protein and cell elevations fluid protein and cell content before, during, and after a course of ECT with 21 for the vast individual differences. Jacobs (1944) determined the cerebrospinal There is evidence to suggest that preECT physical condition accounts in part

RECOMMENDATIONS

hazards of ECT. Research on the unmodified ECT given in the developing It is recommended that more research be carried out on the safety and the

safety precautions that should be followed. However, I here present the recommendations of Frankel et al. (1978) and those of Weiner (1984). does not have the credentials to make recommendations concerning the brain countries of the world would seem to be especially important. The present author

and that more research be carried out. equipment should be made; that the public should be better informed about ECT; trode placement should be used; that EEG monitoring should be carried our; that programs and continuing education opportunities; that inspections of ECT instruction in sophisticated use of ECT should be in psychiatric residency the informed consent procedure; that ordinarily unilateral nondominant elecdetermined; that the possibility of persistent memory defects should be part of Weiner (1984) recommended that a careful analysis of risks and benefits be

siveness to other treatments be taken into account; and that proper informed consent be obtained. unremitting nature of the patient's suffering and incapacitation and unresponestablished; that medical contraindications be considered; that the severity and monitoring, and with appropriate electrode placement and electrical parameters; that ECT only be used in those conditions for which ECT efficacy has been pressure bag and 100% oxygen, with EKG, blood pressure and pulse rate thesia and muscle relaxant drugs and ventilatory assistance with a positive cardiopulmonary or other complications; that ECT be administered with anesroom areas with availability of equipment, drugs, and personnel in the event of pretreatment medical examination; that there be designated ECT and recovery Frankel et al. (1978) recommended that the patients receive a thorough

REFERENCES

- Alpers, B. J. (1946). The brain changes associated with electrical shock treatment: A critical review. Lancet, 66, 363-369.
- Blumenthal, I. J. (1955). Spontaneous seizures and related electroencephalographic find-ings following shock therapy. Journal of Nervous and Mental Disease, 122, 581-588.
 Calloway, S. P., Dolan, R. J., Jacoby, R. J., & Levy, R. (1981). ECT and cerebral atrophy: A computer tomographic study. Acta Psychiatrica Scandinavica, 63, 442-445.
 Coffey, C. E., Figiel, G. S., Djang, W. T., Sullivan, D. C., Herfkens, P. V., & Weiner, R. D. (1988). Effects of ECT or brain structure. American Journal of Psychiatry, 145, 701-
- Cronholm, B., & Ottossom, J. O. (1963). Ultrabrief stimulus techniques in ECT. 1. Influence on retrograde amnesia. Journal of Nervous and Mental Disease, 137, 117-123.
- d'Elia, G., & Frederiksen, S. O. (1980). ACTH4-10 and memory in ECT-treated and untreated patients. I. Effect on consolidation. Acta Psychiatrica Scandinavica, 62, 418-428.
- d'Ella, G., & Roathma, H. (1975). Is unilateral ECT less effective than bilateral ECT? British Journal of Psychiatry, 126, 83-89.
- Frankel, F. H., Bidder, T. G., Fink, M., Mandel, M. R., Small, I. F., Wayne, G. J., Squire, L. R., Dutton, E. N., & Gurel, L. (1978). Electroconvulsive therapy. Report on the tash force on

•

American Psychiatric Association. electroconvulsive therapy of the American Psychlatric Association. Washington, DC

British Journal of Psychiatry, 137, 8-16. Freeman, C. P. L., Weeks, D., & Kendell, R. E. (1980). ECT: Patients who complain. British Freeman, C. P. L., & Kendell, R. E. (1980). Patients' experiences of and attitudes to ECT.

ournal of Psychiatry, 137, 17-25.

Friedberg, J. (1977). ECT as a neurologic injury. Psychiatric Opinion, 14, 16-19. Gastaut, H., & Gastaut, J. (1976). Computerized axial tomography in epilepsy. In J. K.

Goldman, H., Gomer, F. E., & Templer, D. I. (1972). Long-term effects of electroconvulsive Penry (Ed.), The Eighth International Symposium. New York: Raven Press.

therapy upon memory and perceptual-motor performance. Journal of Clinical Psychology, 28, 32-34.

experimental study on cats. Acta Psychiatrica Et Neuroligica Scandinavica, 77, 1-128, Jacobs, J. S. L. (1944). The effect of electric shock therapy upon cerebrospinal fluid Harrelius, H. (1952). Cerebral changes following electrically induced convulsions: An

pressure, protein and cells. American Journal of Psychiatry, 101, 110-112. Janicak, P. G., Davis, J. M., Gibbons, V. G., Ericksen, S., Chang, S., & Gallagher, P. (1985).

Effects of ECT-A meta-analysis. American Journal of Psychiatry, 142, 297-302. Janicak, P. G., Mark, J., Trimakas, K. A., & Gibbons, V. G. (1985). ECT: An assessment of

mental health professionals' knowledge and attitudes. Journal of Clinical Psychiatry, 46, 262-266.

Karliner, W. (1956). Epileptic states following electroshock therapy. Journal of Hillside Hospital, 5, 258-263.

Kendell, B., & Pratt, R. T. C. (1983). British Journal of Psychiatry, 143, 99-100.
Kolbeinsson, H., Arnaldsson, O. S., Petursson, H., & Skulason, S. (1986). Computer tomographic scan in ECT patients. Acta Psychiatrica Scandinavica, 73, 28-32.
Kramer, B. A. (1985). Use of ECT in California, 1977-1983. American Journal of Psychiatry,

142, 1190-1192.

Larsen, E. F., & Vraa-Jensen, G. (1953). Ischaemic changes in the brain following electroshock therapy. Acta Psychiatrica Et Neuroligica Scandinavica, 28, 75-80.

Laurell, B. (1970). Flurorhyl convulsive therapy. Acta Psychiatrica Scandinavica, 213, 5-79. Levy, N. A., Serota, H. M., & Grinker, R. R. (1942). Disturbance in brain function following

Convulsive shock therapy. Archives of Neurology and Psychiatry, 47, 1000-1029. Lippmann, S., Manshadi, M., Wehry, M., Byrol, R., Past, W., Keller, W., Schuster, J., Elam, S., Meyer, O., & O'Danlel, R. (1985). 1250 Electroconvulsant treatments without evi-

Madow, L. (1956). Brain changes in electroshock therapy. American Journal of Psychiatry. 113, 337-347. dence of brain injury. British Journal of Psychiatry, 147, 203-204.

Meldrum, B. S., & Brierley, J. B. (1973). Prolonged epileptic seizures in primates: Ischae mic cell change and its relation to ictal physiological event. Archives of Neurology, 28,

Meldrum, B. S., Horton, R. W., & Brierley, J. B. (1974). Epileptic brain damage in 10-17

adolescent baboons following seizures induced by allylglycine. Brain, 97, 407-418, Meldrum, B. S., Vigouroux, R. A., & Brierley, J. B. (1973). Systemic factors and epileptic

brain damage. Archives of Neurology, 29, 82–87. Menken, M., Safer, J., Goldfarb, C., & Varga, E. (1979). Multiple ECT: Morphologic effects

American Journal of Psychiatry, 136, 453. Mosovich, A., & Katzenelbogan, S. (1948). Electroshock therapy, clinical and eletroen-

Norman, R. M. (1964). The neuropathology of status epilepticus. Medicine, Science and the r Law, 4, 46-51. cephalographic studies. Journal of Nervous and Mental Disease, 107, 517-530.

> ECT AND PERMANENT BRAIN DAMAGE 107

therapy. Acta Psychiatrica et Neuroligica Scandinavica, 35(suppl 145), 1-141. Pacella, B. L., & Barrera, S. E. (1945). Spontaneous convulsions following convulsive shock Ottosson, J. O. (1960). Experimental studies on the mode of action of electroconvulsive

Pearlman, C. A., Sharpless, S. K., & Jarvik, M. E. (1961). Retrograde amnesia produced by therapy. American Journal of Psychiatry, 102, 783-788.

54, 109-112. anesthetic and convulsant agents. Journal of Comparative and Physiological Psychology,

Riese, W. (1948). Report of two new cases of sudden death after electric shock treatment with histopathological findings in the central nervous system. Journal of Neuropathology and Experimental Neurology, 7, 98.

Sackeim, H. A., Decina, P., Prohovnik, I., Malitz, S., & Resor, S. R. (1983). Anticonvulsant Sackeim, H. A., Decina, P., Kanzler, M., & Ken, B. (1987). Effects of electrode placement on and anti-depressant properties of ECT: A proposed mechanism of action. Biological Psychiatry, 18, 310-320. the efficacy of titrated, low dose ECT. American Journal of Psychiatry, 144, 1449-1455.

Shukla, C. D. (1981). Electroconvulsive therapy in a rural teaching general hospital in India. British Journal of Psychiatry, 139, 569-571.Siegel, M. A., Plesser, O. R., & Jacobs, N. R. (1987). Domestica violena: no longer behind closed doors. Plano, TX: Information Aids.

Small, J. G. (1974). EEG and neurophysiological studies of convulsive therapies. In M. Fink, S. Kety, J. McGaugh, & T. A. Williams (Eds.), *Psychobiology of Convulsive Therapy, Vol. 63* (pp. 79-86). Washington, DC:
 Squire, L. R., & Slater, P. C. (1983). Electroconvulsive therapy and complaints of memory

dysfunction: A prospective three-year follow-up study. British Journal of Psychiatry,

Templer, D. I., Ruff, C. F., & Armstrong, G. (1973). Cognitive functioning and degree of of Psychiatry, 123, 441-443. psychosis in schizophrenics given many electroconvulsive treatments. British Journal

Templer, D. I., & Veleber, D. M. (1982). Can ECT permanently harm the brain? Clinical Neuropsychology, 4, 62-66.

Thompson, J. W., & Blain, I. D. (1987). Use of ECT in the United States in 1975 and 1980.

American Journal of Psychiatry, 144, 557-562. Valentine, M., Keddie, K. M., & Dunne, D. (1968). A comparison of techniques in electro-convulsive therapy. British Journal of Psychiatry, 114, 989-996. Weinberger, D. R., Torrey, E. F., Neophytides, A. N., & Wyatt, R. J. (1979). Lateral cerebral ventricular enlargement in chronic schizophrenia. Archives of General Psychiatry, 36,

Weiner, R. D. (1979). The psychiatric use of electrically induced seizures. American Journal of Psychiatry, 136, 1507-1517.

Weiner, R. D., Rogers, H. J., Welch, C. A., Davidson, J. R. T., Miller, R. D., Weir, D., Cahill, J. F., & Squire, L. R. (1983). ECT stimulus parameters and electrode placement. In B. Lerer, R. D. Weiner, & R. H. Belmaker (Eds.), ECT: Basic mechanisms. London:

Weiner, R. D. (1984). Does electroconvulsive therapy cause brain damage? The Behavioral and Brain Sciences, 7, 1-54. John Libbey.

Wilcox, P. (1944). The electroshock convulsion syndrome. American Journal of Psychiatry,