their mental status and provide an early warning sign of a possible suicide attempt.

References

FUMIO MORIYA, Ph.D.
YOSHIKI HASHIMOTO, M.D.
Kochi, Japan

Dementia With Lewy Bodies, Visual Hallucinations, and Medications

To the Editor: In their recent study, Clive G. Ballard, M.R.C. Psych., M.D., et al. (1) “confirm” high frequencies of visual hallucinations and delusions in dementia with Lewy bodies and also conclude that visual hallucinations are significantly more persistent in this disorder than in Alzheimer’s disease. Although extensive clinical evaluations were performed before death, the authors do not report the medication status of their patients. The impact of dopaminergic drugs on the mental state of demented parkinsonian patients should not be ignored. It is interesting that 66% of the patients with dementia with Lewy bodies in this study had visual hallucinations. A prior meta-analysis of dementia with Lewy bodies reported that 68% of the patients with dementia with Lewy bodies receiving dopaminergic drugs had visual hallucinations, but only about half that rate was found in medication-free patients (2). Dr. Ballard et al. may be prematurely attributing visual hallucinations to the pathological process of dementia with Lewy bodies per se rather than to an epiphenomenon, i.e., medication status. A review of their patients’ medications could shed light on this question.

References

MICHAEL SERBY, M.D.
STEVEN C. SAMUELS, M.D.
New York, N.Y.

Child Psychopharmacology, Effect Sizes, and the Big Bang

To the Editor: We read with interest the article by Karen Dineen Wagner, M.D., Ph.D., et al. (1) in the June issue. In their study comparing citalopram to placebo, we were surprised to find the authors reporting an overall effect size of 2.9. With the commonly cited criteria set forth by Cohen, effect sizes can be considered trivial (<0.2), small (0.2 to <0.5), moderate (0.5 to 0.8), or large (>0.80).

By these metrics, the reported effect size can be characterized as gargantuan, big bang-worthy. The value does not appear to be a benign typographical error for “0.29,” given that “2.9” appears twice. An accurate effect size cannot be manually calculated with the information provided in the article. However, in order to arrive at the effect size of 2.9, it can be estimated that a pooled standard deviation of the change score of 2.1 would have been required. Such a narrow standard deviation of the change score seems improbable (a manual calculation with the Ns and standard deviations in the article yields a value of 15.6, for an effect size of 0.4). Moreover, such a low standard deviation of the change score would suggest uniformity in response that is far from consistent with comparable studies.

Alternatively, the authors may have used a different definition or formula to calculate the effect size. This would be unfortunate because the basic job description of an effect size is to facilitate communication among investigators and across measures. The gargantuan 2.9 becomes an unfortunate jarring screech of nails against the chalkboard: it robs from the melody of welcome that this timely contribution otherwise merits.

References

ANDRÉS MARTIN, M.D., M.P.H.
WALTER S. GILLIAM, Ph.D.
New Haven, Conn.
JEFFREY Q. BOSTIC, M.D., Ed.D.
Boston, Mass.
JOSEPH M. REY, M.D.
Sydney, Australia

To the Editor: Dr. Wagner and colleagues reported on a randomized clinical trial for the treatment of depressed children and adolescents with citalopram. The standard of random-

Am J Psychiatry 162:4, April 2005